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ABSTRACT: Thermal residual stresses in freely quenched semicrystalline polymer slabs
were calculated based upon the modifications of the Indenbom theory for inorganic
glasses and linear viscoelasticity. These modifications were introduced to include the
influences of crystallization on mechanical and physical properties of the polymer
during free quenching. The nonisothermal crystallization kinetic model due to Naka-
mura et al. was employed to calculate the variations of crystallinity. In the case of the
Indenbom theory, a polymer during crystallization was assumed to undergo an abrupt
transition from an ideal plastic state to an elastic state upon the completion of crys-
tallization. In the case of linear viscoelasticity, the Morland-Lee constitutive equation
was utilized with the effect of crystallization on the time—temperature dependent shear
relaxation modulus taken into account. The Spencer—Gilmore P — V — T equation of
state was employed to model the specific volume changes during crystallization and
used to determine the local thermal loading that results from inhomogeneous densifi-
cations and gives rise to the thermal residual stresses in the slabs. Based on the above
theoretical work, the thermoelastic and thermoviscoelastic models were developed, and
the corresponding numerical simulation schemes were formulated to calculate the
residual thermal stresses in freely quenched slabs of semicrystalline polymers. Free
quenching experiments were carried out under various cooling conditions using isotac-
tic polypropylene. The layer removal method due to Treuting and Read was utilized to
measure the residual thermal stresses. The simulated and measured results were then
compared. The effects of quenching conditions and crystallization on the development
of residual thermal stresses were evaluated. It has been found that both coolant types
and coolant temperature have significant effects on residual thermal stresses. In
contrast, initial temperature of the polymer melt shows a slight influence only. © 2000
John Wiley & Sons, Inc. J Appl Polym Sci 75: 1404-1415, 2000
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INTRODUCTION

Residual stresses are the stresses that exist in a
material free of external load. They generally re-
sult from nonhomogeneous plastic deformation
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inside the material, which is introduced by differ-
ent sources. Molded polymeric products contain
some amount of frozen-in residual stresses due to
the changes in mechanical and physical proper-
ties under nonisothermal flow and inhomoge-
neous cooling during polymer processing opera-
tions.»? Such stresses can be attributed to two
main resources. The one is due to the shear and
normal stresses that develop during nonisother-
mal flow. These flow stresses do not completely



relax but get frozen-in due to rapid cooling. The
other is due to the effects arising from nonisother-
mal cooling. The latter results in inhomogeneous
densification inside the polymer and the changes
in viscoelastic properties of the polymer. As a
result, thermally induced local plastic deforma-
tion in terms of thermal loading would be intro-
duced between the elements of materials. Thus,
thermal stresses develop as the cooling progresses.
Such stresses become residual when the polymer
vitrifies. In this article, we limit ourselves to a
study of the residual thermal stresses, as pre-
sented in freely quenched polymer slabs only.

It is well recognized that residual stresses
strongly affect the end-use properties and warp-
age of polymeric products. Considerable reduction
in the amount of frozen-in stresses and molecular
orientation reduces the tendency of the moldings
to “craze” and improves their dimensional stabil-
ity on heating. It is hoped that an accurate pre-
diction of residual stresses will allow one to de-
termine optimum processing conditions. Thus,
the factors governing the development of residual
stresses during polymer processing have received
much attention among many researchers over the
years. However, these are concerned mainly with
amorphous polymers, such as polystyrene, poly-
carbonate, and poly(methyl methacrylate).!~!”
For semicrystalline polymers like polyethylene
and isotactic polypropylene, the relevant research
work is rarely seen.'®1° This is because the mech-
anism for the formation of thermal stresses is
greatly complicated by the accompanying crystal-
lization during processing. Unlike an amorphous
polymer whose thermal stresses arise due to the
passage through its glass transition temperature
T, during cooling, thermal stresses in a semicrys-
talline polymer are present due to the occurrence
of crystallization.'®

Relevant theoretical works on the thermal
stresses in quenched amorphous polymers are
generally originated from those for inorganic
glasses. Isayev!' and Isayev and Crouthamel®
have given a review on the subject. Roughly
speaking, the theories can be broken down into
two categories. One is based upon the instant
freezing assumption.>2%21 It states that at a
temperature well above a glass transition temper-
ature T, the polymer can be treated as an ideal-
ized fluid, bearing no stresses due to the rela-
tively low shear modulus. Below T, the polymer
is solidified, behaving like an idealized elastic
material. The other is based upon the free volume
relaxation assumption®>7916:17:22-27 ¢4 take into
account the time- and temperature-dependence of
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shear relaxation modulus of the polymer during
quenching. An appropriate viscoelastic constitu-
tive equation relating the stresses to the strains
of the polymer has to be included in this case.
There exist many versions of the equation. How-
ever, the one derived by Morland and Lee?? seems
to be of the most appealing to many researchers,
including Kabanemi and Crochet,” Shyu and
Isayev,” Muki and Sternberg,?® Lee and Rogers
and Lee et al.,??® Narayanaswamy and Gar-
don,?® and Narayanaswamy.?” They utilized the
Morland—-Lee viscoelastic constitutive equation to
calculate residual thermal stresses in inorganic
or polymeric glasses. Apparently, the theoretical
models for the calculation of residual thermal
stresses in amorphous polymer cannot be imme-
diately applied for the cases of semicrystalline
polymers. However, it is noted that the mechan-
ical and physical properties of semicrystalline
polymers experience a similar transition upon the
occurrence of crystallization.

In the present article, we pose a typical prob-
lem for the free quenching of semicrystalline poly-
mers in an attempt to develop the models and
study the effects of crystallization on the develop-
ment of residual thermal stresses. Both the in-
stant freezing and free volume relaxation as-
sumptions for inorganic glasses and amorphous
polymers are utilized. Based on the modifications
of the Indenbom theory?! and linear viscoelastic-
ity®? with crystallization phenomena taken into
account, the thermoelastic model (ThEM) and
thermoviscoelastic model (ThVEM) for the calcu-
lation of thermal stresses in symmetrically cooled
slabs of isotactic polypropylenes are developed,
respectively. The numerical schemes for solving
the models are then formulated using a finite
difference method. To verify the modeling, free
quenching experiments are conducted under var-
ious cooling conditions using a typical semicrys-
talline polymer, namely, isotactic polypropylene.
By employing the layer removal method,?® resid-
ual thermal stresses in freely quenched i-PP slabs
are measured and compared with model predic-
tions. The effects of quenching conditions and
crystallization on the formation of residual ther-
mal stresses in semicrystalline polymers are eval-
uated.

THEORETICAL

Heat Transfer Analysis

We consider here the idealized problem in which
a semicrystalline polymer slab is initially at a
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Figure 1 (a) Coordinate system in a freely quenched
polymer slab being cooled symmetrically on both sur-
faces. (b) Free quenching experiment and residual
stress measurement.

uniform temperature 7, and quenched into dif-
ferent coolants, for example, water and air, hav-
ing different coolant temperatures, T',. As illus-
trated in Figure 1(a), the lateral dimensions of
the slab are much larger than its thickness, 2b. It
can be assumed that during quenching, heat
transfer occurs in the thickness direction y only.
The cooling is symmetrical about the slab mid-
plane parallel to the surfaces of the slab. At the
progression of quenching, temperature gradients
develop along the thickness direction of the slab.
Thermal stresses are generated by the interac-
tions between nonhomogeneous thermal contrac-

tion and changes of polymer modulus. For the
purpose of determining these interactions, the
variations of temperature profiles during quench-
ing should be known. Thus, heat transfer analysis
is performed. For the idealized problem stated
above, a one-dimensional energy equation is
given by the following?®:

oT 0*T .
PcpgzkthwﬂLpHc (D

where ¢ is time; T, the temperature of the poly-
mer; p, the density; Cp, the heat capacity; &, the
heat conductivity; and H, ., the heat release rate
per volume due to the occurrence of crystalliza-
tion during quenching, as given by

H, =X, AH o6 2
c o CE ()

Here, X, is the ultimate degree of crystallinity for
the polymer; AH_, the heat of fusion for perfect
crystals; 6, the relative degree of crystallinity,
which is described by crystallization kinetics. The
initial condition for the energy equation is

T|-o=To (3)

The boundary conditions are given by

oT
— =0 (4)
ay =0
and
k BT‘ =h-(T T 5
T e

where & is the heat transfer coefficient between
the coolant and the polymer slab.

Crystallization and Thermal Strain

For a semicrystalline polymer, thermal contrac-
tion and the changes in mechanical properties
during quenching are largely dependent upon its
inherent crystallization processes, which is, in
turn, related to the degree of supercooling, for
example, the variation of temperature profile. To
describe crystallization phenomena, nonisother-
mal crystallization kinetics due to Nakamura et
al.3%31 is included. This model can be written in

differential form,®3? as follows:



a0
S =K@ -0 [-In1 - 01" " (©)

where n is Avrami index; K(T') is the rate con-
stant of crystallization that is assumed to follow
the Hoffman-Lauritzen expression of tempera-

ture dependence,'%2932:33 a5 follows:
1
K(T) = (In 2)”"()
tue/
U*/R K, .
X exp 7. )exP " TATY (7)
with
AT =T — T; —L' T.=T,— 30
— 4Ly, 4, f_ T + T?n 5 o — Lg™

1
Here, (t) , a prefactor; U*, the universal acti-
1/2 0

vation energy for molecular segmental jump; R,
universal gas constant; K, nucleation exponent;
AT is generally referred to as the degree of super-
cooling, which is viewed as the driving force for
quiescent crystallization; 79, the equilibrium
melting point of the polymer. To take into account
the induction time #; prior to the start of noniso-
thermal crystallization, the concept of the induc-
tion time index ¢ due to Sifleet et al.2%:323435 ig
employed. According to Chan and Isayev,?® the
induction period of nonisothermal crystallization
is decomposed into various infinitesimal dura-
tions of time, in which isothermal crystallization
is assumed. It can be written that in differential
form?29-32:35

dt 1
dt = t,(T(0)) ®)

where ¢, is the induction time of isothermal crys-
tallization under temperature 7. Thus, when ¢
reaches unity, nonisothermal crystallization is
considered to start. Based upon the expression for
the induction time of isothermal crystallization

due to Godovsky and Slonimsky,*® we have
te(T) = t,, (T, — T)™* 9)

Thus, by applying eq. (9) to eq. (8), the induction
time for nonisothermal crystallization ¢; can be
determined by solving the following integral
equation:
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K dt - )
) oemererett 1Y

Subsequent to the induction period of crystalliza-
tion, crystals grow from the formed nuclei. The
development of crystallinity during the growth
period of crystallization can be calculated using
eq. (6) based on the known temperature fields
from temperature analysis for quenching.

For the idealized problem of free quenching
considered here, global restrictions to thermal
contraction (or strain) of the polymer do not exist.
However, local restrictions occur from the neigh-
boring material elements present due to the non-
homogeneous local thermal contractions arising
from the existence of temperature gradients along
the slab thickness direction. As a result of the
continuity of materials, such local restrictions to
thermal contractions produce thermal stresses in
bulk. Since the polymer properties depend upon
time and/or temperature, such stresses would
persist in the form of residual stresses when the
polymer reaches thermal equilibrium with the
coolant and the crystallization is completed. To
model the local thermal restrictions, the linear
local thermal strain e, is defined in terms of the
local specific volume V, which is obviously a func-
tion of local temperature and local degree of crys-
tallinity. That is,

1 V(T(y, t), 6(y, -V,

where V|, is the specific volume of the polymer at
the initial temperature 7',. For the case of free
quenching, we can utilize the Spencer—Gilmore P
— V — T equation of state at pressure P = 0 for
the calculation of the local specific volume3237-38
under a single phase, either amorphous phase (0
= 0) or completely crystallized phase (6 = 1),
according to the following linear relation:

VT, 6)=V,(T)=V,+ B,T (12)

where the subscript p (=a or ¢) refers to amor-
phous (6 = 0) and completely crystallized phase (6
= 1), respectively; V,, and B, are the correspond-
ing material constants. Typically, the P — V — T
curve of a semicrystalline polymer consists of a
transition region and two linear regions corre-
sponding to amorphous and completely crystal-
lized states, respectively.??3"3® The two linear
regions corresponding to amorphous phase and
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completely crystallized phase are well defined by
fitting eq. (12) to the experimental P — V — T
data. For the transition region that 0 < 6 < 1, the
rule of mixture is assumed in the present study to
approximate V(T, 6) at any mixed phases based
on the portions of amorphous and completely
crystallized phases, V (T) and V (T). With V,,
and V, being calculated with the fitted material
parameters, we can uniformly write
V(T,0)=0-V(T)+(1-0)-V(T) 0=6=1
(13)

With incorporation of eqs. (12) and (13), Equation
(11) can be used to determine the varying local
thermal strains during quenching. Therefore,
thermal loading at a site arising from the differ-
ences in the local thermal strains of neighboring
material elements can be determined for the pur-
pose of calculating thermal stresses in the poly-
mer.

Stress and Strain Analysis

The idealized problem of determining the thermal
stress distribution in a polymer slab cooled sym-
metrically on both faces is similar to the one for
inorganic glass considered by Muki and Stern-
berg,?® and Lee et al.?® Figure 1(a) shows the
orientation of the coordinate axes for a polymer
slab of thickness 2b. Obviously, the symmetry of
cooling demands that all shear stresses be zero.
That is,

0y=0,=0,=0 (14)

Since no surface traction is acting on the faces of
the slab, the normal stress in the thickness direc-
tion of y is identically equal to zero,

7, =0 (15)

Hence, the problem is reduced to one of planar
stresses, in which the only normal stresses o,,
and o,, are nonzero. As pointed out above, with
lateral dimensions large compared with the thick-
ness, these two nonzero stress components are
equal, apart from a possible edge effect. Conse-
quently, it can be written that

O-xx = Uxx(y> t) = O-ZZ = O-ZZ(.y’ t) (16)
For convenience, o,(y, t) is written for the only
nonzero stress components that need be consid-
ered for the idealized free quenching problem.

Similarly, o, is used to represent the normal
stress o,,. Since no external forces act on the
lateral sides of the slab during free quenching, it

is required that
b
j oy, t)=0 a7
0

For strain analysis, the symmetry of cooling
and material continuity across the thickness di-
rection demand all shear strain components, in-
cludinge,,, €., and ¢,,, to be zero due to the facts
that the lateral dimensions are much larger than
the slab thickness, and the edge effects are ne-
glected. Among the nonzero normal strains, the
strain components in the xz plane are indepen-
dent of y, namely, ¢,,(¢) = €,.(¢). Thus, it can be
written that

€y = &,(y, 1) (18)
Sxx = sxx(t) = SZZ = SZZ(t) (19)

For convenience, ¢,, and ¢,, are referred to as ¢,
and &,, as &,. With the above basic stress and
strain analysis for the idealized problem of free
quenching, the model development for the calcu-
lation of residual thermal stresses in semicrystal-

line polymer is greatly simplified.

Thermoelastic Model

We first turn to discuss thermoelastic modeling of
thermal stresses based on some modifications of
the Indenbom theory for inorganic glasses using
the instant freezing assumption.}?2%21 Accord-
ingly, it is assumed that a crystallizing polymer is
considered to be perfectly plastic before the rela-
tive degree of crystallinity 6 reaches a so-called
transitional value 6., indicating the completion of
crystallization. When 6 = 6., the polymer is con-
sidered to be perfectly elastic. According to the
Indenbom theory,*?! normal strain &,, which is
independent of y as noted in the previous section,
can be decomposed into three components. That
is,

sx(t) = ge(yy t) + Sp(y’ t) + Sth(y9 t) (20)

where ¢, is called elastic strain; ¢, plastic strain.
For the plastic region where 6(y, ¢) < 6. and ¢,
= 0, eq. (20) reduces to



sx(t) = Sp()’, t) + sth(.y’ t) (21)
For the elastic region, the averaged elastic strain
over the region €, is zero. Thus, the averaged total
strain g, takes the form,

&.t) = g,(t) + () (22)

where

1 b
ép(t) = b _ y* J sp(ya t) dy7 éth(t)

yE

1 b
= b—y*J emly, t) dy (23)

¥

where y* is the interface between the plastic and
elastic regions. It is noted that ¢, is independent
of y, for example, ¢,.(¢) = £,(f). Assuming that the
interface y* moves inwards regularly from the
slab surface during quenching, it can be obtained
from eqs. (21) and (22) that at the interface of y*,

ep(y*, 8) = £,(¢) + [ew(t) — enly™, ©)] (24)

It should be noted that the plastic strain is ini-
tially zero and increases as cooling proceeds. It
becomes residual when the material element is
immediately vitrified at the interface of y*. When
the whole slab is vitrified, cooling is still contin-
ued until the thermal equilibrium with the cool-
ant is obtained. Thus, it can be attained from egs.
(20) and (22) that

ely) = [E, = &,(y)0+ [, — en(¥)]  (25)

Then, thermal stresses in the slab can be calcu-
lated by the equation of elasticity,®

Eese
g. =

T 1=

(26)

where E, is Young’s modulus of the polymer at
coolant temperature; v, Poisson ratio. Thus far,
according to eqs. (24)—(26), the development of
thermal stresses during quenching can be simu-
lated. It should be pointed out that the residual
plastic strains, £,(y, ¢) are determined at the
interface of y* between the elastic and plastic
regions. The interface is assumed to move regu-
larly from the slab surface towards the center,
dependent upon the rate of crystallization. Once
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the residual plastic strains are determined, all
involved calculations are straightforward.

Thermoviscoelastic Model

Thermoviscoelastic model is developed based
upon the theory of linear viscoelasticity. It is of
interest to note that crystallization induces phase
transformation in the polymer being initially
amorphous. When quenching goes on, crystalline
phase appears at the expense of amorphous one.
After the completion of crystallization, the frac-
tion of the crystalline phase in terms of crystal-
linity remains constant. It is well recognized that
mechanical and physical properties of the poly-
mer during crystallization are strongly influenced
by the development of crystallinity. To consider
the effects of varying crystalline phase during
quenching, we assume a simple linear rule be-
tween viscoelastic properties, such as shear relax-
ation modulus G and the absolute degree of crys-
tallinity, X (=6 - X_,). Thus, one can approximate
the modulus G of the polymer having the absolute
degree of crystallinity X based upon the moduli,
for example, G,, and G, at two reference phases
of different degrees of crystallinity. According to
the time—temperature equivalence, it can be writ-
ten that the modulus at the current time ¢ and
temperature T is

X() - X,
G(T, 1) =% 5 Gi(T,, &(0))
X)) - X,
tx, —x, GdATs &0) @7

where G{(T,, &) and Go(T,, &) are the master
curves of shear relaxation modulus at the refer-
ence temperature 7, for two reference phases
having the absolute degrees of crystallinity of X,
and X,, respectively; & and &, are the associated
reduced times defined as

— ' ds . —
&(T) = 0 an(T(s)’ &(T) =

0

t

S
ar(T(s)) ¥

Here, ar; and az, are the corresponding shift
factors for the master curves at temperature 7.
For the idealized quenching cases considered in
the present study, the Morland—Lee constitutive
equation®?~2° reduces to

t

d
0y, 1) = 0.0y, 1) =f {za(g— £) -

0

X [8x(7) - Sy(y’ T)]} -dr (29)
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t 4 d
0,0, 1 =f {—3 G(&— &) [edn) — &)y, 7]

Jd
+ K(y, 1) 37 [2e.(7) + &,(y, 7)
— 3euly, T)]} -dt (30)

where bulk modulus K is assumed to be crystal-
linity-dependent only. Assuming K, and K, are
the bulk modulus values corresponding to the
amorphous and completely crystallized phases,
respectively, it can be written that for any rela-
tive degree of crystallinity, the bulk modulus

K6)=6-K.+(1-90)-K, (31)

Based on the Boltzmann superposition principle
and eq. (27), the term G(&£ — &) in eqgs. (29) and
(30) is extended to the form

X(T) _Xz
G(¢—-¢) = X, - X, Gi(& — &)

X(1) - X, ,
+ X, - X, Gy(é — &) (32)

B t ds R ds 33)
B OaT,z(s)’ z OaT,Z(S)'

Substituting eq. (29) into eq. (17) and eq. (30) into
eq. (15) gives rise to a system of equations com-
prised of two independent equations with the two
following unknowns: e, and ¢,. Thus, the equa-
tions can be solved, and then the nonzero thermal
stress o, can be determined from the obtained
values of ¢, and ¢, using eq. (29). Since the equa-
tions are highly nonlinear, it is difficult to find an
analytical solution. A finite difference method is
utilized.?®

EXPERIMENTAL

The polymer used in this study is a typical semi-
crystalline polymer, namely, isotactic polypro-
pylene, Profax PP-6823, supplied by Himont
USA, Inc. (Wilmington, DE). Its weight-averaged

molecular weight is 670,000, its melt index is 0.51
dg/min, and its polydispersity index is 3.90.2°

Compression molding was employed to prepare
the plaque having the thickness of 3 mm. A slab
cut from the plaque was heated in a thermostat
oven at 180, 190, or 210°C for about 45 min and
then immediately quenched into air or water at
25 or 45°C. The slab was cut into a straight bar of
50 X 6 X 3 mm. Thin layers were removed from
one surface of the bar using a high-speed Ten-
sikut milling machine with a straight trimmer.*
The resulting imbalance of residual thermal
stresses due to the layer removal causes the bar
to warp to the shape of a circular arc, and the
resultant curvature was quickly measured. This
is illustrated in Figure 1(b). For the freely
quenched polymer slab whose lateral dimensions
are much larger than its thickness, the curvature
of the remaining bar due to a series of layer re-
moval ¢, is approximately calculated as a func-
tion of the overall depth of the previous layers
being removed y;. That is,

20y,
(Px(yl) = (Pz(yl) = L2 (34)

where L is the length of the polymer bar, and 8y,
is the displacement at the far end of the polymer
bar, as illustrated in Figure 1(b) due to the warp-
ing that arises from the layer removal so far. The
residual stresses can be calculated from the mea-
sured curvature as a function of the depth of
material removed.}%182® This layer removal
method for the determination of residual stresses
is originally due to Treuting and Read.?® Accord-
ing to them, the relation of residual stress to the
measured curvature is

do.(y,
(Txx(yl) = Uzz(yl) = m |:(b +y1)2 Z}(}")l’ )

b
T4 +ydely) — 2 J @) dy] (35)

Y1

It should be noted that only the curvature in the
longitudinal direction need to be measured. This
is based upon the assumption that the directional
effect in the plane of the quenched samples can be
neglected as o, = o,. Otherwise, the relation of
residual stresses to curvatures will become
slightly more complicated.!%1828
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Figure 2 The master curves of Young’s modulus of
isotactic polypropylene at various absolute degrees of
crystallinity at the reference temperature 7', = 20°C
(data are taken from Faucher*?).

RESULTS AND DISCUSSION

Material Characterization

To perform temperature analysis for the simula-
tion of free quenching, relevant physical and ther-
mal properties of polypropylene were taken from
the literature,?®*° as follows: the density, p = 900
kg m?; thermal conductivity, ky, = 1.93 x 107!
W/(m K)!; specific heat capacity, Cp, = 2.14
X 102 J/(kg K). In particular, a constant thermal
conductivity is used in the present calculations
instead of the thermal conductivity dependent
upon crystallinity. As shown in 41, the use of the
variable thermal conductivity has practically a
little influence on temperature and spherulite
size development during quenching in compari-
son with those based on the constant thermal
conductivity. In addition, the heat transfer coef-
ficient between the polymer and different coolants
h is experimentally determined.*! It is found that
h = 350 J/(m?K) between the polymer and water,
and & = 27 J/(m?K) between the polymer and air.
For the modeling of crystallization phenomena
during quenching, various material parameters
due to Isayev and Catignani®® were utilized. This
includes t,, = 1.71 X 1077 (s K'%; a = 10;
(1/t1,9)0 1.528 x 1078 (s71); K, = 3.81
X 107° (K®; n = 3; AH, = 9.1020 X 10* (J
kg 1), and X.. = 0.4355. For the determination of
thermal loading during quenching, the material
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parameters in the Spencer—Gilmore P — V — T
equation of state need be provided. From the lit-
erature,®>%73® it is found that V, = 9.225
X 1074 m® kg; V, = 9.95 x 10 * m® kg; B,
= 8.313 x 1077 m’(kg K), and B, = 4.284
x 1077 m®/(kg K).

Various material parameters related to the me-
chanical properties of the polymer are required
for the numerical simulations. For the ther-
moelastic model, Young’s modulus E, = 1.5
X 10° Pa and Poisson ratio » = 0.43.%° For the
thermoviscoelastic model, the master curves of
Young’s modulus at two reference phases of
polypropylene with the absolute degree of crystal-
linity, X,, = 8% and X, = 75%, at the same
reference temperature, T, = 20°C, are adopted
from Faucher,*? along with the corresponding
shift factors: a; 1(T) and as 5(T). These are re-
plotted in Figures 2 and 3, where the symbols
represent the digitized data from Faucher.*? As
seen from Figure 3, two sets of shift factor data for
two reference phases of polypropylene seem to
collapse into one single curve within the temper-
ature range of interest: 7 > T, (= —28°C*).
Thus, the two shift factor functions corresponding
to the two master curves of Young’s modulus are
assumed to be independent of their corresponding
phases. Therefore, assuming that the tempera-
ture dependence of the shift factors is of the Ar-
rhenius type, it can be written that

25 T | T T T T T T T T ] T T T T T
Ll o X, =8% J
rl o X,=75% 1
i curve fitting b
15 - o _
5 .
[ [ 4
(1] - |
[o)] L 4

ko)

5 —
15 -
.25 i ST S I P I P - i
1 2 3 4 5 6

1000/T (K™

Figure 3 Shift factors versus reciprocal tempera-
tures for iPPs at different absolute degrees of crystal-
linity (data are taken from Faucher*?). Line is accord-
ing to eq. (36).
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Figure 4 Numerical scheme for the process simulation of free quenching of a semic-
rystalline polymer slab based upon the thermoviscoelastic model.

E, 1 1
ari(T) =ary(T) = R eXP<T - T) (36)

where E, is termed as the activation energy. By
fitting eq. (36) to the shift factor data at tempera-
tures that 7' > T, as shown in Figure 3, it is found
that the slope of the line fitted to the data, log a,
versus 1/T, is 12,800 K. Therefore, the activation
energy is determined to be £, = 244.9 kJ/mol. Since
E
= m , the
master curves of Young’s modulus can be converted
to those of shear modulus with taking v = 0.5 and
0.43 prior to and after the occurrence of crystalliza-

the shear relaxation modulus, G

tion, respectively. Then, using eq. (27), the shear
relaxation modulus during quenching can be eval-
uated. Similarly, the bulk modulus K, = 2.5 x 10°
Pa and K, = 3.5 X 10° Pa*’ can be used to calculate
the bulk modulus at any degree of crystallinity dur-
ing quenching by using eq. (31).

Numerical Simulation

Based upon the theoretical works for the ther-
moelastic and thermoviscoelastic models, as dis-
cussed in the previous section, the development of
temperature profile and degree of crystallinity
during free quenching is determined by means of
numerical temperature analysis along with crys-
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Figure 5 Thermal stress profiles for PP-6823 slabs
quenched from different initial temperatures (180 and
210°C) to 25°C in water.

tallization kinetics based upon a finite difference
method. For the thermoviscoelastic model, the
viscoelastic properties of the polymer need be
evaluated according to eq. (27) or eq. (32). The
numerical scheme is illustrated in Figure 4. It is
of interest to note that the numerical simulation
of free quenching of a semicrystalline polymer
based upon the thermoelastic model is similar to
that based upon the thermoviscoelastic model.
With replacing the module: ThVEM by the mod-
ule: ThEM for thermoelastic model in Figure 4,
the numerical scheme for the process simulation
of free quenching based on the thermoelastic
model is obtained. For the simulations, 50 nodes
were used to uniformly discretize the half-thick-
ness of a slab. Simulation codes were developed
using ANSI C/C++ programming language, and
implemented on Silicon Graphics Personal Work-
station Iris 4D/35.

Comparison of Theory with Experiments

Figures 5-7 show the predicted (lines) and mea-
sured (symbols) thermal stresses as functions of
the y-locations at various quenching conditions
based upon the models: ThEM and ThVEM, re-
spectively. Generally, the predictions by both the
ThVEM and ThEM agree quite well with the mea-
surements. It is interesting to note what effect a
quenching variable has on thermal stresses as
predicted by the models. From Figure 5, the effect
of initial polymer temperature 7', on the stresses
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Figure 6 Thermal stress profiles for PP-6823 slabs
quenched from 190°C to different coolant temperatures
(25 and 45°C) in water.

can be seen. Both ThEM and ThVEM indicate
that the stresses are nearly independent of T',.
This is also verified by the experiments. The effect
of the coolant temperature T, on thermal stresses
can be observed in Figure 6. Clearly, both models
predict an increase in residual thermal stresses
when T, is decreased. As shown in Figure 7,
different cooling mediums would affect the mag-
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Figure 7 Thermal stress profiles for PP-6823 slabs
quenched from 190 to 25°C in different cooling media
(air and water).
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nitude of thermal stresses. The medium having
the larger heat transfer coefficient tends to induce
the higher stresses. The above observations on
the effects of various cooling variables can be
explained by their influences upon crystallization.
As known from our previous study,?® the crystal-
lization process is strongly affected by cooling
conditions. The lower the coolant temperature 7',
the higher the cooling rates during the quenching.
This would shorten the crystallization time in the
case of PP-6823. As a result, the higher stresses
get frozen in without a significant relaxation pe-
riod in the molten state due to the earlier crystal-
lization. On the other hand, initial melt temper-
ature T, only very slightly affects the overall cool-
ing rates, and the crystallization remains almost
unaffected. This is because activation of crystal-
lization is effective only after the polymer is in its
supercooled state. Obviously, the more effective
cooling medium introduces higher cooling rates
during quenching. As a consequence, the higher
thermal stresses get frozen in due to the earlier
and faster crystallization. The effect of crystalli-
zation on the residual thermal stresses can be
further verified by the simulations with and with-
out the crystallization heat taken into account.
Without the inclusion of crystallization heat in
the simulation, the cooling rates tend to increase
slightly. Thus, the predicted thermal stresses are
expected to increase. This is shown in Figure 8.
In addition, the development of thermal
stresses during the quenching predicted by the
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Figure 8 Thermal stress predictions for PP-6823 slab
quenched from 180 to 25°C in water with and without
inclusion of crystallization heat in simulations.

VT

5, (MPa)

ThVEM
——-8s
24s
— —87s
—--~174s| 7
—290s] 1

oo e 0 T

0.0 0.5 1.0
y/b

Figure 9 Transient thermal stress predictions at dif-
ferent cooling times in PP-6823 slab quenched from 180
to 25°C in water based on the different models.

two models is shown in Figure 9. In the earlier
period of quenching, the surface layers get crys-
tallized and contract, whereas the core layers are
still in the molten state. Thus, the surface layers
tend to compress the core layers, the former being
in traction, but the latter being in compression.
During the later period of quenching, the core
layers gradually get crystallized and tend to con-
tract. However, such contractions are hindered by
the earlier frozen surface layers. As a conse-
quence, thermal stresses herein tend to become
more tensile than compressive. Finally, at the
equilibrium state of quenching, thermal stresses
in the core are tensile, whereas those near the
surface are compressive. This has been shown by
the simulations using both thermoelastic and
thermoviscoelastic models.

CONCLUSIONS

Thermoelastic and thermoviscoelastic models of
thermal stresses arising from free quenching of
semicrystalline polymer are proposed with crys-
tallization phenomena taken into account. It has
been found that thermal stresses show a slight
increase with an increase in the initial tempera-
ture of the polymer. However, coolant tempera-
ture has a significant effect on thermal stresses.
Cooling medium affects the heat transfer effi-
ciency during the quenching. This, in turn, influ-
ences the development of thermal stresses. It can



be concluded that crystallization plays a major
role in governing the development of thermal
stresses of a semicrystalline polymer during cool-
ing. Faster crystallization causes higher residual
stresses. The proposed models are able to provide
good quantitative predictions.
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